Don't write code your Users
haven't asked for.

AGENDA

Behavior-Driven Development (BDD)

Acceptance-Test Driven Development

Specification by Example

Executable Specifications

I. What is BDD?

2. How to do B

3. {cucumber}

D

DX

Have we built the correct software”?

ACCEPTANCE TESTS

Have we built software correctly?

BUSINESS EXPERTS

TESTERS DEVELOPERS

PART 2: HOW TO DO BDD?

Vague Wish — User Story — Executable Specification — Tests & Code

PART 2: HOW TO DO BDD?

Automated Definition of Done

Starting from writing specifications we precisely know
when all User needs are met.

We stop writing code when all specifications pass.

OERORORN < BN <

User need |
User need 2
User need 3
User need 4

User need 5

PART 2: HOW TO DO BDD?

Given an available flight on "my
preferred date”

Executable specifications

When | search for flights from “London”

Expressed in a language understood by business to "Paris" on “my preferred date"
and developers.

Then | am offered the flight

PART 2: HOW TO DO BDD?

Given

Use keywords

When

Separate preconditions from actions, and from

expectations.

hen

PART 2: HOW TO DO BDD?

Be abstract

Don’t reveal implementation details.
They should remain true for any implementation
of the system: Web App, REST API, R Package, etc.

PART 2: HOW TO DO BDD?

Be abstract

Don’t reveal implementation details.
They should remain true for any implementation
of the system: Web App, REST API, R Package, etc.

PART 2: HOW TO DO BDD?

Bad Acceptance Ciriteria

Given an available flight on my
() Use*flights” table in the DB oreferred date

O Have 2 search fisidS.and "Search” button When | search for flights from “London”

(O ResuhS are displayed in a table to "Paris” on "my preferred date”

hen | am offered the flight

Execute them with cucumlber

©

cucumber

Given an available flight on “my
preferred date”

When | search for flights from “London”

to "Paris” on "my preferred date”

hen | am offered the flight

11

PART 3: {CUCUMBER}

3 elements of {cucumber}

|. Feature files — test cases.
2. Steps implementation.

3. Hooks (optional)

12

PART 3: {CUCUMBER}

L N tests/testthat/flight_booking.feature

Feature: Fligeht booking
The flight booking system enables users to search for and book both direct and 1ndirect flights.
Users can select one-way or return trips based on availlable options, search by date and route,
and receive a list of available flights.

Scenario: Book a one-way trip
Given an avallable flight on "my preferred date"
When I search flights from "London" to "Paris" on "my preferred date"
Then I am offered the flight

Scenario: Book a one-way trip
Given 2 avallable flights on "my preferred date"
When I search flights from "London" to "Paris" on "my preferred date"
Then I am offered 2 flights

PART 3: {CUCUMBER}

O tests/testthat/setup-steps.R

given("an available flight on {string}", function(date, context) {

})

when (
"I search flights from {string} to {string} on {string}",
function(from, to, date, context) {

})

then("I am offered the flight", function(context) {

})

then("I am offered {int} flights", function(n, context) {

})

14

PART 3: {CUCUMBER}

L ests/testthat/setup-hooks.H

before(function(scenario_name, context) {

after(function(scenario_name, context) {

Cucumber tests alongside testthat Cucumber tests in own directory

TESTS/ TESTS/

—— TESTTHAT/ — CUCUMBER/
—— TEST-CUCUMBER.R SETUP-STEPS _1.R
—— TEST-UNIT_TEST_1.R — SETUP-STEPS_2.R
—— TEST-UNIT _TEST_2.R — SETUP-HOOKS.R

SETUP-STEPS 1.R —— FEATURE_1.FEATURE

— SETUP-STEPS 2.R —— FEATURE_2.FEATURE
—— SETUP-HOOKS.R —— TESTTHAT/
—— FEATURE_1.FEATURE — TEST-UNIT_TEST_1.R
—— FEATURE_2.FEATURE — TEST-UNIT_TEST_2.R

PART 3: {CUCUMBER}

Behavior-Driven Development is not albout tools.

17

PART 3: {CUCUMBER}

WITHOUT {CUCUMBER} WITH {CUCUMBER}

i tests/testthat/test-flight_booking.R

describe("FlLight booking", {

it("allows booking a trip when available", {
avallable_flights("my preferred date")
flights ¢« search_fligehts("my preferred date")

verify_found_flights(fliehts, n = 1)

it("allows bookineg
available_flights/(

"my preferred date’,

my preferred date

)

flights « search_fligehts("my preferred date")

verify_found_flights(flights, n = 2)

+ steps implementations

18

PART 3: {CUCUMBER}

WITHOUT {CUCUMBER} PROS
I. No extra dependencies.

L tests/testthat/test-flight_booking.R

2. Easy to start with.

describe("Flight booking", {
1t("allows booking a trip when aval
available_flights("my preferred date")
flights < search_fliehts("my preferred date")
verify_found_flights(flights, n = 1) CONS

}) . Limited space for providing context.

1t("allows booking a trip when 2 available", {

available_flights| 2. Doesn't force you to reuse test

"my preferred date”,

"my preferred date” COd e.

)

flights « search_flights("my preferred date")
verify_found_fliehts(flights, n = 2) 3 You need _l_o reOd COde TO

})

1) understand it.

PART 3: {CUCUMBER}

WITH {CUCUMBER}

PROS
. Isolation from implementation

details.

2. Code reuse = maintainability.

3. Understandable by everyone.

4. Live, executable documentation.

CONS
I. New dependency.

2. Pays-off only in a certain scale.

23

| cucumber
Real-life examples

See how {cucumber} is used to test itself,
and how it’s used to test {muttest}.

MUTTEST

https://github.com/jakubsob/muttest/tree/main/tests/acceptance
https://github.com/jakubsob/cucumber/tree/main/tests/acceptance

T hd n k y0u| jakubsobolewski.com/blog

jakubsobolewski.com

quubgob jakubsobolewski.com/r-tests-gallery

m Jakulb Sobolewski

